Edexcel Maths FP3

Topic Questions from Papers

Coordinates

(7)

Leave blank

6. The hyperbola *H* has equation $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where *a* and *b* are constants.

The line L has equation y = mx + c, where m and c are constants.

(a) Given that *L* and *H* meet, show that the *x*-coordinates of the points of intersection are the roots of the equation

$$(a^2m^2 - b^2)x^2 + 2a^2mcx + a^2(c^2 + b^2) = 0$$
(2)

Hence, given that L is a tangent to H,

(b) show that $a^2m^2 = b^2 + c^2$. (2)

The hyperbola H' has equation $\frac{x^2}{25} - \frac{y^2}{16} = 1$.

(c) Find the equations of the tangents to H' which pass through the point (1, 4).

Question 6 continued	blan

1.	The line $x = 8$	is a dire	ectrix of	the	ellipse	with	equation
				2	2		

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, $a > 0$, $b > 0$,

and the point $(2, 0)$ is the corresponding focus.	
Find the value of a and the value of b .	

8. The hyperbola *H* has equation $\frac{x^2}{16} - \frac{y^2}{4} = 1$.

The line l_1 is the tangent to H at the point $P(4 \sec t, 2 \tan t)$.

(a) Use calculus to show that an equation of l_1 is

$$2y\sin t = x - 4\cos t$$

(5)

The line l_2 passes through the origin and is perpendicular to l_1 .

The lines l_1 and l_2 intersect at the point Q.

(b) Show that, as t varies, an equation of the locus of Q is

$$(x^2 + y^2)^2 = 16x^2 - 4y^2$$

(8)

Question 8 continued		blan
Question o continued		
		Q
	(Total 13 marks)	
	TOTAL FOR PAPER: 75 MARKS	
END		

8. The hyperbola H has equation

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

(a) Use calculus to show that the equation of the tangent to H at the point $(a \cosh \theta, b \sinh \theta)$ may be written in the form

$$xb\cosh\theta - ya\sinh\theta = ab$$
(4)

The line l_1 is the tangent to H at the point $(a \cosh \theta, b \sinh \theta)$, $\theta \neq 0$. Given that l_1 meets the x-axis at the point P,

(b) find, in terms of a and θ , the coordinates of P.

(2)

The line l_2 is the tangent to H at the point (a, 0). Given that l_1 and l_2 meet at the point Q,

(c) find, in terms of a, b and θ , the coordinates of Q.

(2)

(d) Show that, as θ varies, the locus of the mid-point of PQ has equation

$$x(4y^2+b^2)=ab^2$$

(6)

	Leave blank
Question 8 continued	
	Q8
	Vo
(Total 14 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

1. Th	e hy	perbo	la <i>F</i>	H ha	as ec	uation
-------	------	-------	-------------	------	-------	--------

$$\frac{x^2}{16} - \frac{y^2}{9} = 1$$

Find

-	(a)	the	coordinates	of the	foci	of H
- 1	a) uic	Coordinates	or mc	1001	0111

(3)

(b)) tł	ne	eq	uations	of	the	dire	ectrices	of	H
---	----	------	----	----	---------	----	-----	------	----------	----	---

(2)

6. The ellipse E has equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

The line l_1 is a tangent to E at the point $P(a\cos\theta, b\sin\theta)$.

(a) Using calculus, show that an equation for l_1 is

$$\frac{x\cos\theta}{a} + \frac{y\sin\theta}{b} = 1$$

(4)

The circle C has equation

$$x^2 + y^2 = a^2$$

The line l_2 is a tangent to C at the point Q $(a\cos\theta,\ a\sin\theta)$.

(b) Find an equation for the line l_2 .

(2)

Given that l_1 and l_2 meet at the point R,

(c) find, in terms of a, b and θ , the coordinates of R.

(3)

(d) Find the locus of R, as θ varies.

(2)

	Leave blank
Question 6 continued	

		Leave
		blank
1.	The hyperbola H has foci at $(5, 0)$ and $(-5, 0)$ and directrices with equations	
	$x = \frac{9}{5}$ and $x = -\frac{9}{5}$.	
	5 5	
	Find a cartesian equation for H .	
	(7)	

3. The point P lies on the ellipse E with equation

$$\frac{x^2}{36} + \frac{y^2}{9} = 1$$

N is the foot of the perpendicular from point P to the line x = 8

M is the midpoint of PN.

(a) Sketch the graph of the ellipse E, showing also the line x = 8 and a possible position for the line PN.

(1)

(b) Find an equation of the locus of M as P moves around the ellipse.

(4)

(c) Show that this locus is a circle and state its centre and radius.

(3)

uestion 3 continued		

1. A hyperbola H has equation

$$\frac{x^2}{a^2} - \frac{y^2}{25} = 1$$
, where a is a positive constant.

The foci of H are at the points with coordinates (13, 0) and (-13, 0).

Find

(a) the value of the constant a,

(3)

(b) the equations of the directrices of H.

(3)

7. The ellipse E has equation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \qquad a > b > 0$$

The line *l* is a normal to *E* at a point $P(a\cos\theta, b\sin\theta)$, $0 < \theta < \frac{\pi}{2}$

(a) Using calculus, show that an equation for l is

$$ax\sin\theta - by\cos\theta = (a^2 - b^2)\sin\theta\cos\theta$$
 (5)

The line *l* meets the *x*-axis at *A* and the *y*-axis at *B*.

(b) Show that the area of the triangle OAB, where O is the origin, may be written as $k\sin 2\theta$, giving the value of the constant k in terms of a and b.

(4)

(c) Find, in terms of a and b, the exact coordinates of the point P, for which the area of the triangle OAB is a maximum.

(3)

estion 7 continued	

Further Pure Mathematics FP3

Candidates sitting FP3 may also require those formulae listed under Further Pure Mathematics FP1, and Core Mathematics C1–C4.

Vectors

The resolved part of \mathbf{a} in the direction of \mathbf{b} is $\frac{\mathbf{a.b}}{|\mathbf{b}|}$

The point dividing AB in the ratio $\lambda : \mu$ is $\frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$

Vector product:
$$\mathbf{a} \times \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \sin \theta \, \hat{\mathbf{n}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$$

$$\mathbf{a.(b\times c)} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix} = \mathbf{b.(c\times a)} = \mathbf{c.(a\times b)}$$

If A is the point with position vector $\mathbf{a} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k}$ and the direction vector \mathbf{b} is given by $\mathbf{b} = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$, then the straight line through A with direction vector \mathbf{b} has cartesian equation

$$\frac{x - a_1}{b_1} = \frac{y - a_2}{b_2} = \frac{z - a_3}{b_3} (= \lambda)$$

The plane through A with normal vector $\mathbf{n} = n_1 \mathbf{i} + n_2 \mathbf{j} + n_3 \mathbf{k}$ has cartesian equation

$$n_1 x + n_2 y + n_3 z + d = 0$$
 where $d = -a.n$

The plane through non-collinear points A, B and C has vector equation

$$\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a}) + \mu(\mathbf{c} - \mathbf{a}) = (1 - \lambda - \mu)\mathbf{a} + \lambda\mathbf{b} + \mu\mathbf{c}$$

The plane through the point with position vector **a** and parallel to **b** and **c** has equation $\mathbf{r} = \mathbf{a} + s\mathbf{b} + t\mathbf{c}$

The perpendicular distance of
$$(\alpha, \beta, \gamma)$$
 from $n_1x + n_2y + n_3z + d = 0$ is $\frac{\left|n_1\alpha + n_2\beta + n_3\gamma + d\right|}{\sqrt{n_1^2 + n_2^2 + n_3^2}}$.

Hyperbolic functions

$$\cosh^{2} x - \sinh^{2} x = 1$$

$$\sinh 2x = 2 \sinh x \cosh x$$

$$\cosh 2x = \cosh^{2} x + \sinh^{2} x$$

$$\operatorname{arcosh} x = \ln\left\{x + \sqrt{x^{2} - 1}\right\} \quad (x \ge 1)$$

$$\operatorname{arsinh} x = \ln\left\{x + \sqrt{x^{2} + 1}\right\}$$

$$\operatorname{artanh} x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right) \quad (|x| < 1)$$

Conics

	Ellipse	Parabola	Hyperbola	Rectangular Hyperbola
Standard Form	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$y^2 = 4ax$	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$xy = c^2$
Parametric Form	$(a\cos\theta,b\sin\theta)$	$(at^2, 2at)$	$(a \sec \theta, b \tan \theta)$ $(\pm a \cosh \theta, b \sinh \theta)$	$\left(ct, \frac{c}{t}\right)$
Eccentricity	$e < 1$ $b^2 = a^2(1 - e^2)$	e=1	$e > 1$ $b^2 = a^2(e^2 - 1)$	$e = \sqrt{2}$
Foci	(±ae,0)	(a, 0)	(±ae, 0)	$(\pm\sqrt{2}c,\pm\sqrt{2}c)$
Directrices	$x = \pm \frac{a}{e}$	x = -a	$x = \pm \frac{a}{e}$	$x + y = \pm \sqrt{2}c$
Asymptotes	none	none	$\frac{x}{a} = \pm \frac{y}{b}$	x = 0, y = 0

Differentiation

$$f(x) f'(x)$$

$$\operatorname{arcsin} x \frac{1}{\sqrt{1-x^2}}$$

$$\operatorname{arccos} x -\frac{1}{\sqrt{1-x^2}}$$

$$\operatorname{arctan} x \frac{1}{1+x^2}$$

$$\operatorname{sinh} x \operatorname{cosh} x$$

$$\operatorname{cosh} x \sinh x$$

$$\operatorname{tanh} x \operatorname{sech}^2 x$$

$$\operatorname{arsinh} x \frac{1}{\sqrt{1+x^2}}$$

$$\operatorname{arcosh} x \frac{1}{\sqrt{x^2-1}}$$

$$\operatorname{artanh} x \frac{1}{1+x^2}$$

Integration (+ constant; a > 0 where relevant)

Arc length

$$s = \int \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx$$
 (cartesian coordinates)

$$s = \int \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2} \, \mathrm{d}t \quad \text{(parametric form)}$$

Surface area of revolution

$$S_x = 2\pi \int y \, ds = 2\pi \int y \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$
$$= 2\pi \int y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \, dt$$

Further Pure Mathematics FP1

Candidates sitting FP1 may also require those formulae listed under Core Mathematics C1 and C2.

Summations

$$\sum_{r=1}^{n} r^{2} = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{n=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2}$$

Numerical solution of equations

The Newton-Raphson iteration for solving
$$f(x) = 0$$
: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	(at ² , 2at)	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through
$$\theta$$
 about O : $\begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line
$$y = (\tan \theta)x$$
: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

In FP1, θ will be a multiple of 45°.

Candidates sitting C4 may also require those formulae listed under Core Mathematics C1, C2 and C3.

Integration (+ constant)

$$f(x) \qquad \int f(x) dx$$

$$\sec^2 kx \qquad \frac{1}{k} \tan kx$$

$$\tan x \qquad \ln|\sec x|$$

$$\cot x \qquad \ln|\sin x|$$

$$\csc x \qquad -\ln|\csc x + \cot x|, \quad \ln|\tan(\frac{1}{2}x)|$$

$$\sec x \qquad \ln|\sec x + \tan x|, \quad \ln|\tan(\frac{1}{2}x + \frac{1}{4}\pi)|$$

$$\int u \frac{dv}{dx} dx = uv - \int v \frac{du}{dx} dx$$

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx
$$k \sec^2 kx$$

sec x $\sec x \tan x$
cot x $-\csc^2 x$
cosec x $-\csc x \cot x$

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2}x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r}x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$